跳至主要内容

网络营销数据解读:事情不是你看到的那样

网络营销数据解读(二)——事情不是你看到的那样

网络营销数据解读:那又怎么样呢?

http://mygogou.com/mm-714/

http://mygogou.com/mm-715/

如果您对以下问题的回答都是"不一定",而且您可以说出"不一定"的原因……这个系列之后的文章请直接跳过,不用浪费时间看了:)

1. 假如我们给Brandmarketing.com.cn(假设它是电子商务网站)在QQ和新浪上花同样的钱投放了广告,QQ广告一天展示了 5,000,000次,带来了50,000个访客,200个订单,新浪广告一天展示了4,000,000次,带来60,000个访客,300个订单。您觉 得我们是否应该减少在QQ的投放,加大在新浪的投放?

2. 假如新浪广告的Impression, Click和Order都是QQ广告的5倍,是否说明了新浪的投放ROI更高?

3. 假如QQ一天带来了50000个访客,30000个浏览了超过3个页面,新浪一天带来60000个访客,40000个浏览了超过3个页面,是否说明新浪流量更匹配?

4. 假如QQ一天带来了50000个访客,在您网站注册了300个新帐户,新浪一天带来60000个访客,400个注册了新帐户,所以新浪的投放性价比更高?

5. 您原来的SEM Manager离职,来了个新的,他来了之后关键字广告ROI大为提升,其他数据不变,CPO(平均订单成本)从20块下降到18块,我们应该表扬他吗?

6. 品牌宣传活动,您有两个landing page,A页面的Bounce Rate(有多少比例的访客看过这个页面马上离开)是80%,B页面的Bounce Rate是90%;Web Analytics显示,A页面最终产生了400个订单,B页面只有200个。我们认为A页面活动较为吸引人,或者页面设计较好,对么?

7. 您有一个网站,访问量很大,而且您做了监控,发现应该大多是真实的流量——但是,转化率很低(如果是e-commerce,就是成交量小,如果是别的,可能是下载量小、注册量小),结论是您的网站内容不够吸引人,对么?

8. 您发现您顾客的平均购买周期是30天,所以您认为每10天来一次的客户是超级忠实客户,而已经60天没来的客户可能是流失客户,需要用之前那篇粗糙却方便的客户关系管理模型来挽回这些客户,您觉得这个思路合理么?

9. 假如我们的网站上个月每天访问量是2万,这个月每天访问量1万5,说明我们网站出了什么问题,对客户吸引力下降了,对么?

10. 我们打算在网站上安装在线客服,当客户访问网站一定时间后还没有convert(下单、注册、下载你的电子书,试玩你的游戏),就弹出在线客服窗口来和客 户沟通。因为Web Analytics告诉我们说所有客户的平均停留时间是100秒,所以我们决定在100秒时弹出这个窗口,您觉得这样做合理么?

基本上,10道题的结论都有问题。下面我分几篇文章来介绍怎样才能系统和科学的解读网络营销数据。

今天我们可以来讨论一个最基础,而且看起来很简单的问题:我们真的知道报告里的原始数据的含义么?

给一个简单的测试(这次后面是有答案的:p):

举例来说,如果您看到一份Marketing Agent给您的报告,里面说"我们发出去了10 million Email, deliver rate(到达率) 99.99%,unique open rate(打开率)高达19%,unique CTR(点击率)19%,看了信的人都点击了,说明设计很棒! 效果非常好!从点击来看,80%的客户都是New Visitor(新访客),说明我们这次活动对于抓取新用户是很成功的。唯一的缺陷是我们的网站抓住客户的能力,访客来到了网站之后,ATOS(平均访问 时间)只有19秒,我们下次应该进一步优化网站……"

您对这番话的理解是不是:

到达率99.99%,那么有9.999 million的客户收到了邮件。
有1.9 million的客户打开了email,也有1.9 million点击了email——这样想起来应该打开邮件的客户都点击了。
1.9 million里面有80%是新用户,我让1.52 million本来不认识我的客户更了解我了。
1.9 million访客,他们平均在我网站逗留了19秒——时间太短了,我们应该想想办法。

如果您觉得4条都是错的——恭喜您不用花时间看下去了。

如果您觉得4条里面有对的,说明您可能对某些网络营销数据还可以多了解一些:

1. New Visitor代表的不是"新用户"、"新顾客"或者"新访客",它代表的是您的监控工具跟您说"来的这个人我之前没见过"——每次有人访问网站,监控工 具就会往那个人机器里留个痕迹(cookie)以便以后相认,下次他再来,系统察看他机器,发现有这个痕迹,就觉得"这人我见过"然后把它归入"老访客 ",而如果找不到这个痕迹,就会认为他是新访客。所以,当您的老访客换了一台机器,系统也会把他当作一个新访客;当您的老访客有意无意清空了痕迹 (cookie),系统还是会把他当作新访客……总而言之,80%的New Visitor不代表有80%的人从来没来过你网站,这个数据需要打个折扣——具体要根据您网站特点具体情况具体分析。

2. Open Rate不代表有百分之多少的人打开了您的邮件,它代表的是"有多少人的邮箱下载了您的监控图片"——系统很难知道用户到底有没有看邮件,所以大部分系统 会采用一个诡异的方式来侦测:他们在每个邮件里面加一张只有一个像素大小的小图片,然后用你的email有没有去下载使用这张图片来判断你有没有打开这封 信。所以,如果您的email默认不显示图片(比如gmail对于陌生邮件就都不显示图片),系统就会认为这封邮件没有被打开过。所以unique open rate = 19%常常代表有超过19%的用户打开过邮件(看没看就不知道了……),这个数据可能是25%,那么就不是每个打开过邮件的人都点击了邮件。

3. Deliver Rate不代表有多少客户"收到"了你的邮件,它常常只代表这些客户的邮件服务器"没有把你的邮件退回来",这封邮件命运难测,有可能是就此消失掉了(客 户没有收到),也可能是直接进了客户的垃圾邮件箱,过了几天被自动清除了。99.99%也是要打一个折扣的。

4. ATOS,这个解释起来更加的复杂……对常见的监控系统来说,它是不知道访客具体在网站上停留了多久的。为了计算您在网站的停留时间,它会在您打开第N个 页面时去看一下表(比如09:30:22),然后在您打开第N+1个页面时再看一下(比如09:30:50),然后它拿两个时间相减,得到您在第N个页面 上停留时间(比如28秒)——说到这里您应该已经发现问题:它没法知道您在最后一个页面停留了多长时间。对于市场营销来说(特别是针对新用户的 campaign),这个问题更严重——因为很多人点击广告,来到landing page,然后就走了,这些人一共就只访问了一个页面!系统拿不到第二个页面打开的时间信息,所以有可能会把这些人在网站的停留时间都算作0秒,那么您得 到的所谓"平均停留时间19秒"其实是个非常扭曲的数据,并不能代表真实情况(数据偏小)。举例来说,我在自己的 blog(www.MarsOpinion.com)上安装了Google Analytics,它监控的用户访问时间如下图,可以看到ATOS是3:11秒:

如果我只看那些"只访问了一个页面"(对于blog来说,很多人只是上来看最新更新,bounce rate很高)的访客,会发现ATOS居然是0秒:

而我如果看"访问超过一个页面"的访客,这个数据又变成了惊人的9:46!是第一个数据的3倍!

现在,您是不是觉得这些"一目了然"的数据其实并不是那么清楚?

如果我们对那些数字代表什么含义都不清楚的话,解读又从何说起呢?

再来一个非常常见(无数家EMail Solution咨询公司都有类似的Case Study)的例子看能不能让您更晕:

1. www.MarsOpinion.com(我的blog,鉴于不注明出处的转载越来越多,不得以都用自己blog做例子,把链接放到文章里面)的 Shopping Cart Abandonment Rate为70%,100个人把东西放到购物车里,只有30人完成订单结了帐,有70个人本来想买东西最终放弃了!

2. 我们为www.MarsOpinion.com设计了一系列高科技人性化无以伦比的高级Campaign——去掉形容词之后你会发现Campaign的本 质是给这些Abandoned Cart的Customer发一封Email,内含"You forgot something in your cart"的提醒,以及一些incentives,例如折扣券。

3. 这个Campaign非常成功,AS Email的open rate比普通commercial email提高300%,CTR提高400%,转化率提高100%! 本来已经放弃购物的消费者收到了信,有10%的人通过点击这封Email再次来到了网站购物!所以我们可以推算出Abandonment Rate从70%下降到了63%!最终消费客户会增加23%! MarsOpinion.com年销售额2亿美金,所以我们预计这个这个Campaign可以帮助他们成长4600万美金!鉴于我们这个Solution 只卖200万,ROI高达2300%!

4. 为了体现我们的专业,我们做了A/B Testing:我们发现在客户放弃购物24小时后马上发Email,转化率比在3天后再发这封信要高87%!另外,我们发现,放一个coupon在邮件 里,转化率会提高47%!——我们经过精密计算,发现额外的销售和利润足以cover折扣券的成本。经过严谨的测试,我们决定……。

您觉得这个论证有问题么?问题在哪?

========== 我是分隔线 ==========

这个Case问题很多,但是最根本的——也是在其他Case中最流行的——就是计算Marketing Contribution的方式。

因为Web Analytics的完善,网络营销常常能够取得比传统营销方式更完整全面的反馈信息,就好像读者留言所说"我们应该看实际效果,看带来了多少销售,带来了多少利润!"。

关键是:我们监控到的"带来XXXXXX"实际的含义是什么?Campaign创造的效果么?1000个人点击广告,300个人买东西,真的代表这个Marketing Channel为公司"带来"了1000个Visit和300个订单么?

不是的,我们监控的效果,那些数据,只能表明有"多少效果可能是由XX Campaign带来",更具体地说,是"有多少人在点击了广告后的某一段时间内下了订单买了东西",而不是"XX Campaign产生了这些订单"。你监控到这个campaign"带来"了300张订单,只能说明这个广告在购物过程中可能起到了作用,但并不能说这个 广告创造了300个订单——有可能300个人里面有299个原本就会来买:)

回到上面那个例子,Shopping Cart Abandonment Rate为70%其实并不能代表有70%的潜在客户放弃了购买。产生Abandonment的原因有无穷多,从技术上来说,很多Web Analytics Tool会把在一个Session"有加入购物车行为,但是没有结帐行为"就当成一个Abandonment,这样的话,客户离开电脑两个小时再下订单, 也会被算作Abandon了一次;从业务上来看,很多人用购物车来代替Wish List进行购物比较,这些人在实际购物前都会被计算很多次Abandonment,另外还有很多人仅仅是决定过一会儿再买(例如回家看看另一张信用卡卡 号),这些人也会被系统认为"放弃了购物"。了解了这个词的真实含义之后,我们至少可以知道一点——"其实这些人中间有很多本来就会回来买东西的"。假设 这些人中间9.5%的人本来就会回来购物好了,那么其实所谓的"本来已经放弃购物的消费者收到了信,有10%的人通过点击这封Email再次来到了网站购 物!"只是给网站多挽回了0.5%的客人而已,所谓的"这个 Campaign可以帮助他们成长4600万美金!"自然也就变成了增长230万美金。

之后的A/B Testing其实就更扯了(这也是业界真实的案例,而且这个A/B Testing的结论还被多家援引,成为了所谓Best Practice的论据)。假设我们说说的那9.5%的回头客会分散在Abandonment一小时后到30天后完成购物(时间越靠近 Abandonment,购物概率越大),你在24小时后发信当然效果比3天后发信"效果好",不是因为你能产生更多订单,而是因为你能把更多的原本会发 生的订单效果计算到自己头上。因为发了Coupon之后Conversion Rate升高就说要发Coupon也是很扯的说法。真要算,Coupon成本要计算进去,而且这个成本不应该和所有使用了Coupon的订单去比(因为其 中大部分是本来就会购物的),而是应该和增量去比。假设我们所说的是10%的Coupon,那么成本就是4600*10%=460万美金,而按照前文所述 的实际销售增量才230万美金,就算你毛利率50%,也还是亏损几百万。何况,插入Coupon之后可能会引发一系列连锁反应——例如让消费者找到规律, 之后要买什么东西就Abandon一个Shopping Cart然后等Coupon来了再买之类,之后亏损会更大。

========== 我还是分隔线 ==========

综合第一个例子,如果我们不够了解New Visitor, Deliver Rate, Open Rate, ATOS,Abandonment Rate, Sales Attribution的真实含义,而只是望文生义想当然的话,我们很可能就会作出错误的判断。更糟的是,还有很多的名次定义比文中描述的这些更复杂和混 乱。

所以我的建议是:

1. 如果您是购买企业级的、付费的产品(例如Omniture),请在签合同时的时候顺便把training hours也买了,然后列张表把你关心的各个指标的具体定义问清楚(不同vendor的定义还不一样@__@),不要想当然。

2. 如果使用免费的产品——例如Google Analytics,请仔细阅读文档,或者招一个愿意阅读文档深入了解工具的人。

3. 找专业人士咨询。——至于你找的人是否专业,你可以用本文中的例子去问他看他的结论,呵呵。有些人会把文中的话说一遍之后告诉你其他更深入的信息(例如你 用的工具其实是可以查ATOS的,只是误差有60秒之类;或者告诉你其他方法获得inbox deliver rate之类),另一些"网络营销专家"可能就会直接转话题开始和你谈概念谈人生谈理想,呵呵。

4. 如果实在找不到人,至少心里面要知道"不能望文生义,这些词未必是他们表面的意思",给自己留有余地。

========== 我还是分隔线 ============

看到这里,可能有几个读者会产生新的问题说:so what?

假如我们认真学习了(或者找到了懂行的人来帮我们),我们是否就能够解读数据,并且用数据来帮助我们更好的决策呢?

基本上……做到目前这一步还是不行,抱歉。



 

评论

此博客中的热门博文

20个免费的SEO网站分析工具

  在开发和维护网站的过程中, 网站分析 将对网站的前途起到非常重大的作用。今天暴风彬彬为大家收集了20个用来对自己的网站进行分析的资源或工具,而且它们几乎不用注册甚至下载就可以使用哦。有些可以说是 SEO 必不可少的工具!还等什么,快往下看…   下面要介绍的这20个工具,有些能对你提交的网站进行详尽的分析并作出详细的分析报告,甚至提示如何解决网站存在的一些问题,以达到优化效果;有些工具只是提供一个大体的分析。我相信其中大部分都会对你的SEO工作有所帮助,而且会是你的网站维护起来更有意思 :-D  译者注:您还可以参考以下网站优化相关文章: 《 浅谈网站用户体验UX与SEO的关系 》 《 推荐两个SEO辅助搜索工具 》 《 Google 评价 blog 的指标 》  《 Google 网页排名背后的技术 》  1. Website Grader   Website Grader是我平常比较喜欢使用 SEO分析工具 ,因为它分析得很全面,可用性也很高。通过Website Grader你将得到一个关于你提交的网站的非常详尽的分析报告,报告涉及到了网站的各个部分,比如页面结构、域名信息、标题摘要信息(h1,h2,h3 这些)、Google索引数量和bot最后爬行日期、RSS是否正确、Google/Yahoo/Alexa/MSN上的反向链接数、 Technorati排名、del.icio.us的收藏数、Alexa的排名情况和Google PageRank值。并且还会对提交的网站进行打分及网站出现的问题的修改建议。通常Website Grader所提出来的修改建议是很有价值的,而且能详细的致命问题出在哪,如何才能解决这样的问题。   2. Trifecta   Trifecta是这20个 SEO工具 中比较独特的一个,它以不同的标准分析一个网页、一个博客甚至一个顶级域名下的整个网站,他最终会为你提交的网站总结大致的分数及报告。如果不是会员的话每天可以申请一份分析报告。 3. Spider Simulator   这个分析工具会对你提交的网站进行相对于搜索引擎友好度的分析,并对提交的网站进行评分。主要的评分标准是Meta标签的使用、网页的标题、图片和Alt属性...

十年来浏览器行业没有出现新内核

Opera首席执行官Jon S. von Tetzchner今天表示,就浏览器来说,虽然互联网经历了十年的高速发展期,但浏览器内核本身实际没有实质突破,谷歌Chrome虽然是个新的浏览器,但与苹果Safari一样都是基于WebKit内核,"可以说,十年来浏览器本身没有出现新内核",Jon表示。 作为一家老牌的浏览器厂商,Opera浏览器桌面版市场占有率远远落后于IE和Firefox,但是在移动产品市场中,Opera却处于遥遥领先的地位。IDC今年10月的统计数据显示,Opera mini版全球活跃用户已经超过2100万,同时Opera还通过与老牌游戏机厂商任天堂合作将Opera 浏览器内置到NDSL掌机和热销的Wii游戏机中,Jon表示,"Opera mini 是我们目前最重要的产品之一,今年1到9月Opera mini的用户量增长超过350%,在中国我们也通过与空中网的合作不断提升市场份额"。Opera mini也使用了云计算的概念,在手机上网时,服务器端会进行数据压缩,手机用户上网访问WWW网页会拥有更快的速度和效率。 事实上,Opera是目前全球唯一一家跨平台浏览器厂商,Jon表示,"不管是手机、还是移动设备、还是机顶盒、还是电脑,Opera都可以提供优质快速稳定的浏览器。" 不过Jon也坦陈,"对Oprea来说,我们的营收主要来自三个方面,比较传统的仍然是软件授权预装和桌面版流量点击分成,不过从今年开始,Opera已经开始与T-Mobile等重要运营商开始按照Opera mini的用户活跃度进行合作分成,这是Opera未来的一个巨大增长点。" 1995年末,Jon S. von Tetzchner与Opera总程序设计师Geir Ivars y在挪威成立Opera Software 公司,之前两人供职于挪威最大的运营Televerket ,1995年,Televerket 更名为今天的Telenor。   2008-11-28   洛阳生活信息点评网:http://luo...