跳至主要内容

祖冲之与圆周率

祖冲之

祖冲之是中国古代一位伟大的数学家和天文学家,生平著作很多,内容也是多方面的。在数学方面的论著,不幸均已失传。在历 代国内外的各种图书目录中,可以见到他所写的数学著作的书名有"缀术"6卷,"九章算术义注"9卷,"重差注"1卷。在天文历法方面,他编制成"大明历 ",并为大明历写了"驳议"。在古代典籍的注释方面,祖冲之有"易义"、"老子义"、"庄子易"、"释论语"、"释孝经"等著作,但亦均失传。文学作品方 面他著有"述异记"10卷,在"太平御览"等书中可以看到这部著作的片断。

从青年时起,祖冲之便对天文学和数学发生了兴趣。他把从上古时起直至他生活时代的各种文献、记录、资料,几乎全部搜罗来 进行研究,并且亲自进行精密的测量和仔细的推算。正像他自己所说的那样,"亲量圭尺,躬察仪漏,目尽毫厘,心穷筹策"。他对刘歆、张衡、郑玄、阚译、王 番、刘徽等科学家的工作进行了仔细研究,一一驳正了他们的错误,导出了许多极有价值的结果。准确到7位有效数学的园周率数值便是人所共知的例子。

圆周率π的计算,标志着一个国家和民族的数学水平。中国古代也和世界上任何文化开发较早的国家和地区一样,人们最早使用 的园周率是3。这一误差很大的数值一直沿用到汉代。入汉以后,对园周率的改进吸引了不少科学家的注意,都作了一些工作。最为重要的是魏晋时期的数学家刘 徽,他用"割园术"计算出的园周率为3.14。

关于祖冲之在圆周率方面的工作,其史料仅见于《隋书·律历志》中还记载说,祖冲之还给出了圆周率的两个近似分数值:

密率:π=355/113,小数点后6位准确,
约率:π=22/7,小数点后2位准确。

在欧洲,1100多年后才算得355/113这一数值,被称为"安东尼兹率"。日本数学家三上义夫在1912年提出应称π=355/113为"祖率"。

关于祖冲之是如何算得如此精密的结果,没有任何史料流传下来,这是非常遗憾的。不过根据当时的情况判断,祖冲之用的仍是 刘徽的"割园术"。果真如此的话,祖冲之需要计算出园内接正12288边形和正24576边形的面积,要进行加、减、乘、除、开方等运算达130次以上, 每次运算都要精确到9位数字,可以想象,在当时用罗列算筹来计算,是需要何等的精心与超人的毅力。

关于球体体积的计算,是祖冲之及其儿子祖(日桓)在数学方面又一项了不起的成就。祖氏父子根据刘徽在"九章算术注"中担出的正确方法,求得了球体体积公式

球体积=4/3πγ3。

在导出球体积公式的过程中,祖氏父子总结出了所谓的"祖氏原理"。在西方这一原理被称为"卡瓦列里原理",但它的发现者意大利数学家卡瓦列里(B.Cavalieri 1598~1647)比祖氏父子要晚1100多年。

祖冲之和圆周率

求算圆周率的值是数学中一个非常重要也是非常困难的研究课题。中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆 周率计算的一个跃进。 祖冲之是中国古代伟大的数学家和天文学家。祖冲之于公元429年出生在建康(今江苏南京),他家历代都对天文历法有研究,他从小就接触数学和天文知识,公 元464年,祖冲之35岁时,他开始计算圆周率。     在中国古代,人们从实践中认识到,圆的周长是"圆径一而周三有余",也就是圆的周长是圆直径的三倍多,但是多多少,意见不一。在祖冲之之前,中国数学家 刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长,用这种方法,刘徽计算圆周率到小数点后4位数。 祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(即3.1415926与3.1415927之间),并得出了圆周率分数形 式的近似值。祖冲之究竟用什么方法得出这一结果,现在无从查考。如果设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16000多边形,这需要化 费多少时间和付出多么巨大的劳动啊! 

   祖冲之计算得出的圆周率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把圆周率π叫做"祖率"。 除了在计算圆周率方面的成就,祖冲之还与他的儿子一起,用巧妙的方法解决了球体体积的计算。他们当时采用的原理,在西方被称为"卡瓦列利 "(Cavalieri)原理,但这是在祖冲之以后一千多年才由意大利数学家卡瓦列利发现的。为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原 理为"祖原理"。 

  祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在 中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负 数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。

祖冲之:数学史上的创举——"祖率"

祖冲之是世界上第一位将圆周率准确地推算到小数点后七位数值的科学家,并将这一纪录在世界上保持了一千年之久。

  在祖冲之以前,我国在数学方面已经达到世界先进水平,涌现出许多杰出的数学家和优秀的数学著作。早在原始社会末期,"龙山文化"的陶器上已经出 现了各种几何图案。商朝时期,已经开始在数学运算中采用十进位制,这是世界上最早的进位制,它的采用大大方便了数学计算。春秋时代成书的《周易》,是世界 上第一本研究排列组合的书。到了战国时代,百家争鸣,数学有了进一步的发展,出现了运用至今的"九九"乘法口诀;在几何学方面,已普遍地运用尺规作图,从 而促进了几何学的发展。同时,在诸子百家的著作中,也提出了许多有价值的数学理论。例如:墨家学派的经典《墨子》中,有不少地方涉及到几何学上的一些基本 问题,对此它都准确地定义,其准确程度与古代西方流行的欧几里德的《几何原本》不相上下。道家学派所著的《庄子》中,提出了极限理论,其中的著名例证:" 有一根一尺长的棍子,每天截其一半,那永远也截不完",至今仍被讲解数列极限所经常引用。

  到了秦汉魏晋之际,随着封建经济的巨大发展,与之密切相关的数学也有了长足的进步,涌现了一大批的数学著作和知名的数学家。其中最主要的著作有 《周髀算经》、《九章算术》和《海岛算经》。《周髀算经》成书的年代不晚于公元前一世纪,作者已经不知道了,东汉著名数学家赵君卿为之作过注,其主要成就 在于提出了著名的"勾股定理"及采取了较为复杂的分数运算等方面。《九章算术》的成书年代同《周髀算经》大约同时,最初的作者是谁也已不知道了,许多数学 家都对此书进行过增订删补,如西汉数学家张苍、耿寿昌、许商、杜忠等,三国时期著名数学家刘徽为之作了注。这部著作集先秦、秦汉时期数学优秀成果之大成, 对以后中国古代数学产生了非常深刻的影响。全书分为方田(主要是计算田亩的方法)、少广(主要是开平方和开立方的方法)、商功(主要是计算各种体积,解决 筑城、兴修水利等建筑工程中的实际问题)、粟米(主要是计算各种粮食间的换算方法)、差分(主要是等级式的计算方法)、均输(主要是计算征收和运输粮食的 方法)、盈虚(主要是统计有关生产收入的问题)、勾股(主要是勾股定理的实际运用方法)等九章,共二百四十六个问题及每个问题的解法。这部书从数学成就上 看,首先应该提到的是:其中记载了当时世界上最先进的分数四则运算和比例算法。另外,书中记载的开平方和开立方的方法,实际上就是求解一元二次方程;而为 解方程而联立方程组的解法,比欧洲同类算法早出一千五百多年。书中还在世界数学史上第一次提出了负数概念和正负数的加减法运算法则。《九章算术》不仅在中 国数学史上占有重要地位,它的影响还远及国外,朝鲜、日本都曾把《九章算术》作为教科书,其中的某些计算方法,还传到了印度、阿拉伯和欧洲。

  《海岛算经》的作者是三国时期的刘徽。在这部书中,他主要讲述了利用标杆进行两次、三次及至四次测量来解决各种测量数学的问题,其在此方面的造诣之深,远远超越了当时的西方数学家。而这种测量数学,正是地图学的数学基础。

  除了以是三部著作外,较为重要的数学著作还有《孙子算经》、《五曹算经》、《夏侯阳算经》等。

  祖冲之经过刻苦钻研,继承和发展了前辈科学家的优秀成果。他对于圆周率的研究,就是他对于我国乃至世界的一个突出贡献。祖冲之对圆周率数值的精确推算值,用他的名字被命名为"祖冲之圆周率",简称"祖率"。

  什么是圆周率呢?圆有它的圆周和圆心,从圆周任意一点到圆心的距离称为半径,半径加倍就是直径。直径是一条经过圆心的线段,圆周是一条弧线,弧 线是直线的多少倍,在数学上叫做圆周率。简单说,圆周率就是圆的周长与它直径之间的比,它是一个常数,用希腊字母"π"来表示。在天文历法方面和生产实践 当中,凡是牵涉到圆的一切问题,都要使用圆周率来推算。

  如何正确地推求圆周率的数值,是世界数学史上的一个重要课题。我国古代数学家们对这个问题十分重视,研究也很早。在《周髀算经》和《九章算术》 中就提出径一周三的古率,定圆周率为三,即圆周长是直径长的三倍。此后,经过历代数学家的相继探索,推算出的圆周率数值日益精确。西汉末年刘歆在为王莽设 计制作圆形铜斛(一种量器)的过程中,发现直径为一、圆周为三的古率过于粗略,经过进一步的推算,求得圆周率的数值为3.1547。东汉著名科学家张衡推 算出的圆周率值为3.162。三国时,数学家王蕃推算出的圆周率数值为3.155。魏晋之际的著名数学家刘徽在为《九章算术》作注时创立了新的推算圆周率 的方法——割圆术。他设圆的半径为1,把圆周六等分,作圆的内接正六边形,用勾股定理求出这个内接正六边形的周长;然后依次作内接十二边形,二十四边 形……,至圆内接一百九十二边形时,得出它的边长和为6.282048,而圆内接正多边形的边数越多,它的边长就越接近圆的实际周长,所以此时圆周率的值 为边长除以2,其近似值为3.14;并且说明这个数值比圆周率实际数值要小一些。在割圆术中,刘徽已经认识到了现代数学中的极限概念。他所创立的割圆木, 是探求圆周率数值的过程中的重大突破。后人为纪念刘徽的这一功绩,把他求得的圆周率数值称为"徽率"或称"徽术"。

  刘徽以后,探求圆周率有成就的学者,先后有南朝时代的何承天,皮延  3.14。以上的科学家都为圆周率的研究推算做出了很大贡献,可是和祖冲之的圆周率比较起来,就逊色多了。

  祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。它研 究和计算的结果,证明圆周率应该在3.1415926和3.1415927之间;   来表示。他成为世界上第一个把圆周率的准确数值计算到小数点以后七位数字的人。直到一千年后,这个记录才被阿拉伯数学家阿尔·卡西和法国数学家维叶特所打 破。祖冲之提出的"密率",也是直到一千年以后,才由德国  称之为"安托尼兹率",还有别有用心的人说祖冲之圆周率是在明朝末年西方数学传入中国后伪造的。这是有意的捏造。记载祖冲之对圆周率研究情况的古籍是成书 于唐代的史书《隋书》,而现传的《隋书》有元朝大德丙午年(公元1306年)的刊本,其中就有和其他现传版本一样的关于祖冲之圆周率的记载,事在明朝末年 前三百余年。而且还有不少明朝之前的数学家在自己的著作中引用过祖冲之的圆周率,这些事实都证明了祖冲之在圆周率研究方面卓越的成就。

  那么,祖冲之是如何取得这样重大的科学成就呢?可以肯定,他的成就是建立在前人研究的基础之上的。从当时的数学水平来看,祖冲之很可能是继承了 刘徽所创立和首先使用的割圆术,并且加以发展,因此获得了超越前人的重大成就。在前面,我们提到割圆术时已经知道了这样的结论:圆内接正n边形的边数越 多,各边长的总和就越接近圆周的实际长度。但因为它是内接的,又不可能把边数增加到无限多,所以边长总和永远小于圆周。

  祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。当他切割到圆的内接一百九十二边形时,得到了"徽率"的数值。但他没有 满足,继续切割,作了三百八十四边形、七百六十八边形……一直切割到二万四千五百七十六边形,依次求出每个内接正多边形的边长。最后求得直径为一丈的圆, 它的圆周长度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之间,上面的那些长度单位我们现在已不再通用,但换句话说:如果圆的 直径为1,那么圆周小于3.1415927、大   大不到千万分之一,它们的提出,大大方便了计算和实际应用。

  要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动。我们知道,在祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是一根 根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。通过对算筹的不同摆法,来表示各种数目,叫做筹算法。如果计算数字的位数越多,所需要摆 放的面积就越大。用算筹来计算不象用笔,笔算可以留在纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的 图形与算式。因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。要求得祖冲之圆周率的数值,就需要对九位有效数字的小数进行加、 减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后十六、七位。今天,即使用算盘 和纸笔来完成这些计算,也不是一件轻而易举的事。让我们想一想,在一千五百多年前的南朝时代,一位中年人在昏暗的油灯下,手中不停地算呀、记呀,还要经常 地重新摆放数以万计的算筹,这是一件多么艰辛的事情,而且还需要日复一日地重复这种状态,一个人要是没有极大的毅力,是绝对完不成这项工作的。

  这一光辉成就,也充分反映了我国古代数学高度发展的水平。祖冲之,不仅受到中国人民的敬仰,同时也受到世界各国科学界人士的推崇。1960年, 苏联科学家们在研究了月球背面的照片以后,用世界上一些最有贡献的科学家的名字,来命名那上面的山谷,其中有一座环形山被命名为"祖冲之环形山"。

  祖冲之在圆周率方面的研究,有着积极的现实意义,适应了当时生产实践的需要。他亲自研究过度量衡,并用最新的圆周率成果修正古代的量器容积的计算。

  古代有一种量器叫做" (釜)",一般的是一尺深,外形呈圆柱状,那这种量器的容积有多大呢?要想求出这个数值,就要用到圆周率。祖冲之利用他的研究,求出了精确的数值。他还重 新计算了汉朝刘歆所造的"律嘉量"(另一种量器,与上面提到的 都是类似于现在我们所用的"升"等量器,但它们都是圆柱体。),由于刘歆所用的计算方法和圆周率数值都不够准确,所以他所得到的容积值与实际数值有出入。 祖冲之找到他的错误所在,利用"祖率"校正了数值。

  以后,人们制造量器时就采用了祖冲之的"祖率"数值。





 

评论

此博客中的热门博文

20个免费的SEO网站分析工具

  在开发和维护网站的过程中, 网站分析 将对网站的前途起到非常重大的作用。今天暴风彬彬为大家收集了20个用来对自己的网站进行分析的资源或工具,而且它们几乎不用注册甚至下载就可以使用哦。有些可以说是 SEO 必不可少的工具!还等什么,快往下看…   下面要介绍的这20个工具,有些能对你提交的网站进行详尽的分析并作出详细的分析报告,甚至提示如何解决网站存在的一些问题,以达到优化效果;有些工具只是提供一个大体的分析。我相信其中大部分都会对你的SEO工作有所帮助,而且会是你的网站维护起来更有意思 :-D  译者注:您还可以参考以下网站优化相关文章: 《 浅谈网站用户体验UX与SEO的关系 》 《 推荐两个SEO辅助搜索工具 》 《 Google 评价 blog 的指标 》  《 Google 网页排名背后的技术 》  1. Website Grader   Website Grader是我平常比较喜欢使用 SEO分析工具 ,因为它分析得很全面,可用性也很高。通过Website Grader你将得到一个关于你提交的网站的非常详尽的分析报告,报告涉及到了网站的各个部分,比如页面结构、域名信息、标题摘要信息(h1,h2,h3 这些)、Google索引数量和bot最后爬行日期、RSS是否正确、Google/Yahoo/Alexa/MSN上的反向链接数、 Technorati排名、del.icio.us的收藏数、Alexa的排名情况和Google PageRank值。并且还会对提交的网站进行打分及网站出现的问题的修改建议。通常Website Grader所提出来的修改建议是很有价值的,而且能详细的致命问题出在哪,如何才能解决这样的问题。   2. Trifecta   Trifecta是这20个 SEO工具 中比较独特的一个,它以不同的标准分析一个网页、一个博客甚至一个顶级域名下的整个网站,他最终会为你提交的网站总结大致的分数及报告。如果不是会员的话每天可以申请一份分析报告。 3. Spider Simulator   这个分析工具会对你提交的网站进行相对于搜索引擎友好度的分析,并对提交的网站进行评分。主要的评分标准是Meta标签的使用、网页的标题、图片和Alt属性...

十年来浏览器行业没有出现新内核

Opera首席执行官Jon S. von Tetzchner今天表示,就浏览器来说,虽然互联网经历了十年的高速发展期,但浏览器内核本身实际没有实质突破,谷歌Chrome虽然是个新的浏览器,但与苹果Safari一样都是基于WebKit内核,"可以说,十年来浏览器本身没有出现新内核",Jon表示。 作为一家老牌的浏览器厂商,Opera浏览器桌面版市场占有率远远落后于IE和Firefox,但是在移动产品市场中,Opera却处于遥遥领先的地位。IDC今年10月的统计数据显示,Opera mini版全球活跃用户已经超过2100万,同时Opera还通过与老牌游戏机厂商任天堂合作将Opera 浏览器内置到NDSL掌机和热销的Wii游戏机中,Jon表示,"Opera mini 是我们目前最重要的产品之一,今年1到9月Opera mini的用户量增长超过350%,在中国我们也通过与空中网的合作不断提升市场份额"。Opera mini也使用了云计算的概念,在手机上网时,服务器端会进行数据压缩,手机用户上网访问WWW网页会拥有更快的速度和效率。 事实上,Opera是目前全球唯一一家跨平台浏览器厂商,Jon表示,"不管是手机、还是移动设备、还是机顶盒、还是电脑,Opera都可以提供优质快速稳定的浏览器。" 不过Jon也坦陈,"对Oprea来说,我们的营收主要来自三个方面,比较传统的仍然是软件授权预装和桌面版流量点击分成,不过从今年开始,Opera已经开始与T-Mobile等重要运营商开始按照Opera mini的用户活跃度进行合作分成,这是Opera未来的一个巨大增长点。" 1995年末,Jon S. von Tetzchner与Opera总程序设计师Geir Ivars y在挪威成立Opera Software 公司,之前两人供职于挪威最大的运营Televerket ,1995年,Televerket 更名为今天的Telenor。   2008-11-28   洛阳生活信息点评网:http://luo...